Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Upper Cervical Spine Loading Simulating a Dynamic Low-Speed Collision Significantly Increases the Risk of Pain Compared to Quasi-Static Loading With Equivalent Neck Kinematics.

Dynamic cervical spine loading can produce facet capsule injury. Despite a large proportion of neck pain being attributable to the C2/C3 facet capsule, potential mechanisms are not understood. This study replicated low-speed frontal and rear-end traffic collisions in occiput-C3 human cadaveric cervical spine specimens and used kinematic and full-field strain analyses to assess injury. Specimens were loaded quasi-statically in flexion and extension before and after dynamic rotation of C3 at 100 deg/s. Global kinematics in the sagittal plane were tracked at 1 kHz, and C2/C3 facet capsule full-field strains were measured. Dynamic loading did not alter the kinematics from those during quasi-static (QS) loading, but maximum principal strain (MPS) and shear strain (SS) were significantly higher (p = 0.028) in dynamic flexion than for the same quasi-static conditions. The full-field strain analysis demonstrated that capsule strain was inhomogeneous, and that the peak MPS generally occurred in the anterior aspect and along the line of the C2/C3 facet joint. The strain magnitude in dynamic flexion continued to rise after the rotation of C3 had stopped, with a peak MPS of 12.52 ± 4.59% and a maximum SS of 5.34 ± 1.60%. The peak MPS in loading representative of rear-end collisions approached magnitudes previously shown to induce pain in vivo, whereas strain analysis using linear approaches across the facet joint was lower and may underestimate injury risk compared to full-field analysis. The time at which peak MPS occurred suggests that the deceleration following a collision is critical in relation to the production of injurious strains within the facet capsule.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app