JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration.

Biofabrication 2016 September 17
Biomedical scaffolds must be used in tissue engineering to provide physical stability and topological/biochemical properties that directly affect tissue regeneration. In this study, a new cell-laden scaffold was developed that supplies micro/nano-topological cues and promotes efficient release of cells. The hierarchical structure consisted of poly(ε-caprolactone) macrosized struts for sustaining a three-dimensional structural shape, aligned nanofibers obtained with optimized electrospinning, and cell-printed myoblasts. Importantly, the printed myoblasts were fully safe and were efficiently released from the cell-laden struts to neighboring nanofiber networks. The incorporation of micro/nanofibers in the hierarchical scaffold significantly affected myoblast proliferation, alignment, and even facilitated the formation of myotubes. We observed that myosin heavy chain expression and the expression levels of various myogenic genes (MyoD, myogenin, and troponin T) were significantly affected by the fiber alignment achieved in our hierarchical cell-laden structure. We believe that the combination of cell-printing and a hierarchical scaffold that encourages fiber alignment is a highly promising technique for skeletal muscle tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app