JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Notch signaling promotes nephrogenesis by downregulating Six2.

Development 2016 November 2
During nephrogenesis, multipotent mesenchymal nephron progenitors develop into distinct epithelial segments. Each nephron segment has distinct cell types and physiological function. In the current model of kidney development, Notch signaling promotes the formation of proximal tubules and represses the formation of distal tubules. Here, we present a novel role of Notch in nephrogenesis. We show in mice that differentiation of nephron progenitors requires downregulation of Six2, a transcription factor required for progenitor maintenance, and that Notch signaling is necessary and sufficient for Six2 downregulation. Furthermore, we find that nephron progenitors lacking Notch signaling fail to differentiate into any nephron segments, not just proximal tubules. Our results demonstrate how cell fates of progenitors are regulated by a transcription factor governing progenitor status and by a differentiation signal in nephrogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app