Add like
Add dislike
Add to saved papers

Variable density magnetization transfer (vdMT) imaging for 7T MR imaging.

NeuroImage 2018 March
As the use of ultra-high field (UHF; ≥7T) magnetic resonance (MR) imaging expands, there is an increasing need to establish high-resolution MR imaging protocols for patients with neurological disease. Magnetization transfer (MT) imaging has been used to provide information about changes in the magnitude of the restricted protons that are caused by tissue damages. Several studies have found that MTR has a good sensitivity to measure changes in myelin concentration within the brain. Because of the much higher specific absorption rate (SAR) of tissue and longer acquisition time required for UHF, however, in-vivo studies using conventional pulsed MT sequences at UHF have not been well utilized. In this study, we introduce a new MT data acquisition approach using a 7T MR system, variable density magnetization transfer (vdMT) imaging, which can be reasonably included in a routine patient scan protocol with a much shorter scan time and reduced discomfort to the patient. To reduce SAR and scan time while maintaining at least similar MTR image quality to that obtained with the conventional method, a higher density of MT RF pulses was applied in the center of k-space, and sparsely applied MT RF pulses were used in the outer part of k-space. The fraction of k-space receiving 100% MT RF density and TR were optimized based on in-vivo ROI analysis, and results were confirmed with high-resolution MTR map using a vdMT approach from healthy controls and patients with multiple sclerosis (MS). The experimental results confirmed that vdMT imaging can cover a whole brain volume in an acceptable scan time for routine patient scans while providing MTR image quality at least similar to that obtained with conventional MT imaging (correlation coefficient=0.95 in an agar-gel phantom [MT offset frequency=1kH], 0.90 in a postmortem MS brain, and 0.85 in the 4 healthy volunteers). MS lesions were associated with signal reductions in the postmortem MS brains and in the patients with MS. In this study, we have described a new approach for acquiring high-resolution MTR map of the whole brain volume using 7T MR imaging. This vdMT method provides similar image quality to that obtained with the conventional method, and shortens the scan time by reducing SAR. These results suggest that vdMT approach is a method that could be used for UHF scans of patients with neurological disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app