Add like
Add dislike
Add to saved papers

Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.

It is important to fabricate biocompatible and chemical-resistant microstructures that can be powered and controlled without a tether in fluid environment for applications when contamination must be avoided, like cell manipulation, and applications where connecting the power source to the actuator would be cumbersome, like targeted delivery of chemicals. In this work, a novel fabrication method was described to encapsulate magnetic composite into pure SU-8 structures, enabling the truly microscale ferromagnetic microrobots biocompatible and chemical resistant. The microrobots were developed using the simple multilayer photolithography that allows us to mass produce and were actuated contact-free by external magnetic field to complete micromanipulations of micro-objects. The microrobots were actuated moving along a preplanned path to transport a glass microsphere object at an approximately average speed of 1.1 mm/sec and can be operated to rotate, aim at targets and collect objects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app