Add like
Add dislike
Add to saved papers

Lumbar- and Cervicothoracic-Spine Loading During a Fast-Bowling Spell.

CONTEXT: Epidemiological studies highlight a prevalence of lumbar vertebrae injuries in cricket fast bowlers, with governing bodies implementing rules to reduce exposure. Analysis typically requires complex and laboratory-based biomechanical analyses, lacking ecological validity. Developments in GPS microtechnologies facilitate on-field measures of mechanical intensity, facilitating screening toward prevention and rehabilitation.

OBJECTIVE: To examine the efficacy of using GPS-mounted triaxial accelerometers to quantify accumulated body load and to investigate the effect of GPS-unit placement in relation to epidemiological observations.

DESIGN: Repeated measures, field-based.

SETTING: Regulation cricket pitch.

PARTICIPANTS: 10 male injury-free participants recruited from a cricket academy (18.1 ± 0.6 y).

INTERVENTION: Each participant was fitted with 2 GPS units placed at the cervicothoracic and lumbar spines to measure triaxial acceleration (100 Hz). Participants were instructed to deliver a 7-over spell of fast bowling, as dictated by governing-body guidelines.

MAIN OUTCOME MEASURES: Triaxial total accumulated body and the relative uniaxial contributions were calculated for each over.

RESULTS: There was no significant main effect for overs bowled, in either total load or the triaxial contributions to total load. This finding suggests no cumulative fatigue effect across the 10-over spell. However, there was a significant main effect for GPS-unit location, with the lumbar unit exposed to significantly greater load than the cervicothoracic unit in each of the triaxial planes.

CONCLUSIONS: There was no evidence to suggest that accumulated load significantly increased as a result of spell duration. In this respect the governing-body guidelines for this age group can be considered safe, or potentially even conservative. However, the observation of higher body load at the lumbar spine than at the cervicothoracic spine supports epidemiological observations of injury incidence. GPS microtechnologies might therefore be considered in screening and monitoring of players toward injury prevention and/or during rehabilitation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app