JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pathological changes of the hippocampus and cognitive dysfunction following frontal lobe surgery in a rat model.

Acta Neurochirurgica 2016 November
BACKGROUND: Postoperative cognitive dysfunction (POCD) is a known complication after intracranial surgery. Impaired hippocampal neurogenesis has been associated with cognitive dysfunction in animal models.

METHODS: In order to assess hippocampal changes after brain surgery, a frontal lobe corticectomy was performed in ten adult Wistar rats (group 4). Three different control groups (n = 10 each) included no treatment (G1), general anesthesia alone (G2), and craniectomy without dural opening (G3). Twenty-four hours after surgery, half of the animals were killed, and the mRNA levels for IL-6, TNF-α, and brain-derived growth factor (BDNF) in the contralateral hippocampus were assessed by qPCR. Seven days later, the remaining animals underwent anxiety and memory testing. Afterwards, the number of immature neurons in the hippocampal cortex was measured by doublecortin (DCX) staining.

RESULTS: Twenty-four hours after surgery, mRNA levels of IL-6 and TNF-α increased and BDNF decreased in both surgical groups G3 and G4 (p = 0.012). Cognitive tests demonstrated an increase in anxiety levels and memory impairment in surgical groups compared with non-surgical animals. These changes correlated with an inhibition of hippocampal neurogenesis evidenced by a decreased number of new neurons (mean ± SD for G1-4: 66.4 ± 24; 57.6 ± 22.2; 21.3 ± 3.78; 5.7 ± 1.05, p < 0.001, non-parametric ANOVA).

CONCLUSIONS: Intracranial surgery was demonstrated to induce an inflammatory reaction within the hippocampus that compromised neurogenesis and impaired normal cognitive processing. Corticectomy had a greater effect than craniotomy alone, indicating a central trigger for hippocampal inflammatory changes. POCD after craniotomy may originate from a central inflammatory response resulting from surgical trauma to the brain parenchyma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app