JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

A Natural Model of Mouse Cardiac Myocyte Senescence.

Many cardiac aging studies are performed on mice first and then, due to difficulty in mouse cardiomyocyte culture, applied the rat neonatal cardiomyocytes to further determine the mechanisms in vitro. Now, the technological challenge of mouse cardiomyocyte culture has been overcome and there is an increasing need for the senescence models of mouse cardiomyocytes. In this study, we have demonstrated that the senescence of mouse cardiomyocytes occurred with the extended culture time as shown by the increased β-galactosidase staining, increased p53 expression, decreased telomere activity, shorted telomere length, increased production of ROS, increased cell apoptosis, and impaired mitochondrial ΔΨm. These senescent responses shared similar results in aged mouse heart tissues in vivo. In summary, we have established and characterized a novel senescence model of mouse cardiomyocytes induced by the extended culture time in vitro. The cell model could be useful for the increased cardiac aging studies worldwide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app