Add like
Add dislike
Add to saved papers

In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater.

Although reductive dissolution of Fe(III) oxides has been well accepted for As mobilization in alluvial aquifers, the key factors controlling this process are poorly understood. Arsenic(V)-adsorbing ferrihydrite, goethite and hematite were used to examine in-situ mobilization and transformation of adsorbed As(V) and Fe(III) oxides. In the Hetao basin, seven wells with wide ranges of groundwater As were selected to host As(V)-Fe(III) oxides sand. During 80 d experiments, As was firstly desorbed and then released via reductive dissolution of iron oxide from ferrihydrite, while only desorption was observed from goethite/hematite sand. Desorbed As was predominantly controlled by groundwater HCO3 - and DOC, while reductive dissolution-related As release was mainly regulated by ORP values, DOC and Fe(II) concentrations. Mineral transformation from ferrihydrite to lepidocrocite and goethite/or mackinawite would also contribute to As release. Arsenic species was transformed from As(V) to As(III) on ferrihydrite, but remained unchanged on goethite and hematite. Arsenic partition between As-Fe(III) oxide sand and real groundwater ranged between 0.012 and 0.102L/g. Kd-sand between As-goethite sand/As-hematite sand and groundwater fell within the ranges observed between sediments and groundwater. This study suggests that As desorption, reductive dissolution and mineral transformation of ferrihydrite would be the major processes controlling As mobility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app