Add like
Add dislike
Add to saved papers

Reverse Coarse-Graining for Equation-Free Modeling: Application to Multiscale Molecular Dynamics.

Constructing atom-resolved states from low-resolution data is of practical importance in many areas of science and engineering. This problem is addressed in this article in the context of multiscale factorization methods for molecular dynamics. These methods capture the crosstalk between atomic and coarse-grained scales arising in macromolecular systems. This crosstalk is accounted for by Trotter factorization, which is used to separate the all-atom from the coarse-grained phases of the computation. In this approach, short molecular dynamics runs are used to advance in time the coarse-grained variables, which in turn guide the all-atom state. To achieve this coevolution, an all-atom microstate consistent with the updated coarse-grained variables must be recovered. This recovery is cast here as a nonlinear optimization problem that is solved with a quasi-Newton method. The approach yields a Boltzmann-relevant microstate whose coarse-grained representation and some of its fine-scale features are preserved. Embedding this algorithm in multiscale factorization is shown to be accurate and scalable for simulating proteins and their assemblies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app