JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Induction of Maltose Release by Light in the Endosymbiont Chlorella variabilis of Paramecium bursaria.

Protist 2016 November
The endosymbiotic green algae of Paramecium bursaria are known to release a photosynthate to the host cells. The endosymbiont Chlorella variabilis F36-ZK isolated in Japan releases maltose under acidic conditions, and such release requires both light and low pH. However, whether photosynthate release is due to light sensing by photoreceptors or is merely a consequence of active photosynthesis is unclear. Herein, we studied the effect of light on maltose release from C. variabilis F36-ZK; we measured maltose release using a combination of 1-phenyl-3-methyl-5-pyrazolone derivative and 14 C-tracer methods. Blue (450nm) or red (around 600nm) light was most effective to stimulate maltose release. This suggests that the photosynthetic pathway probably participates in maltose release, because the effective wavelength corresponds to the absorption spectrum of chlorophyll. Furthermore, maltose release was slightly affected by addition of a photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, but was abolished by another inhibitor of photosynthesis, 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone, suggesting that electron flow through photosystem I may be more involved in maltose release. Interestingly, starving F36-ZK cells cultured under prolonged dark conditions did not release maltose but retained their photosynthetic capacity. Our results thus show that maltose release is regulated by light and cellular conditions in endosymbiotic Chlorella.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app