Add like
Add dislike
Add to saved papers

Impact of cyanogen iodide in killing of Escherichia coli by the lactoperoxidase-hydrogen peroxide-(pseudo)halide system.

Free Radical Research 2016 December
In the presence of hydrogen peroxide, the heme protein lactoperoxidase is able to oxidize thiocyanate and iodide to hypothiocyanite, reactive iodine species, and the inter(pseudo)halogen cyanogen iodide. The killing efficiency of these oxidants and of the lactoperoxidase-H2O2-SCN(-)/I(-) system was investigated on the bioluminescent Escherichia coli K12 strain that allows time-resolved determination of cell viability. Among the tested oxidants, cyanogen iodide was most efficient in killing E. coli, followed by reactive iodine species and hypothiocyanite. Thereby, the killing activity of the LPO-H2O2-SCN(-)/I(-) system was greatly enhanced in comparison to the sole application of iodide when I(-) was applied in two- to twenty-fold excess over SCN(-). Further evidence for the contribution of cyanogen iodide in killing of E. coli was obtained by applying methionine. This amino acid disturbed the killing of E. coli mediated by reactive iodine species (partial inhibition) and cyanogen iodide (total inhibition), but not by hypothiocyanite. Changes in luminescence of E. coli cells correlate with measurements of colony forming units after incubation of cells with the LPO-H2O2-SCN(-)/I(-) system or with cyanogen iodide. Taken together, these results are important for the future optimization of the use of lactoperoxidase in biotechnological applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app