Add like
Add dislike
Add to saved papers

A new model for the artificial aorta blood vessels using double-sided radial functionally graded biomaterials.

Based on radial functionally graded biomaterials and inspired by the geometry of a real aorta blood vessel, a new model was proposed to fabricate the artificial blood vessels. A finite element analyzer is employed to reach the optimal and proper material properties while earlier, it was validated by two famous theories, i.e., the first shear deformation and the plane elasticity. First, the geometry of a real ascending aorta part was simulated and then solved under the axially varying blood pressure and other real and actual conditions. Since the construction of artificial blood vessels just similar to the natural one is impossible, it was tried to find the best substitutes for other materials. Due to the significant properties of functionally graded biomaterials in the reduction in sudden changes of stress and deformation, these types of materials were selected and studied. Two types of conventional single-sided and an efficient double-sided radial functionally graded vessel were proposed and simulated. The elastic behaviors of proposed vessels were obtained and compared to ones previously attained from the real vessel. The results show that all the desired behaviors cannot be achieved by using a conventional single-sided radial FG vessel. Instead and as a conjecture, a smart double-sided radial FG biomaterial is suggested. Fortunately, the proposed material can meet all the desired goals and satisfy all of the indices simultaneously.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app