JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Differential mucosal IL-10-induced immunoregulation of innate immune responses occurs in influenza infected infants/toddlers and adults.

Young children (<5 years of age but especially those <2-year old) exhibit high rates of morbidity and frequently require hospitalizations due to complications from respiratory viral infections. This is also a population for which we understand less about how their unique level of immunological maturation affects their antiviral immune responses. However, we do know from prior studies that their T cells appear to apoptose in the lungs owing to limited interferon (IFN)γ autocrine signaling during infection. To begin to further understand additional limits, we utilized an infant/toddler murine model infected with influenza virus with an adult comparator. In our model, young mice exhibited lower interleukin (IL)-10+ IFNγ+ co-producing CD4 T cells infiltrating the lungs that paralleled with a failed switch from an innate to adaptive immune response at the mid infection stage. Specifically, limited co-IL-10 production correlated with a lack of influenza-specific antibodies and subsequent complement receptor signaling (complement receptor type-1 related gene Y (CCRY)/p65) to the lung infiltrating CD4 T cells therefore limiting their IKAROs upregulation. Thus, limited IL-10 production appeared to diminish signaling to lung macrophages to stop accumulating late into infection. Taken together, our results suggest a novel role for complement mediated signaling in CD4 T cells with respect to IL-10 co-production. Furthermore, a subsequent failure to shift from the unfocused innate immune response to the specific adaptive responses may be a principle cause in the enhanced morbidity common in respiratory viral infection of young children.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app