Add like
Add dislike
Add to saved papers

2,5-Dimethylcelecoxib prevents pressure-induced left ventricular remodeling through GSK-3 activation.

Glycogen synthase kinase-3 (GSK-3) is a crucial regulator of cardiac hypertrophy. We previously reported that 2,5-dimethylcelecoxib (DM-celecoxib), a celecoxib derivative unable to inhibit cyclooxygenase-2, prevented cardiac remodeling by activating GSK-3, resulting in lifespan prolongation in a mouse model of genetic dilated cardiomyopathy. In the present study, we investigated whether DM-celecoxib can also prevent pressure-induced cardiac remodeling and heart failure, elicited by transverse aortic constriction (TAC). Before testing the effects of DM-celecoxib, we compared the effects of TAC on the hearts of wild-type and GSK-3β hetero-deficient (GSK-3β(+/-)) mice to determine the role of GSK-3 in cardiac remodeling and heart failure. GSK-3β(+/-) mouse hearts exhibited more severe hypertrophy, which was characterized by accelerated interstitial fibrosis, than wild-type mouse hearts after TAC, suggesting that reduced GSK-3β activity aggravates pressure-induced left ventricular remodeling. We subsequently examined the effects of DM-celecoxib on TAC-induced cardiac remodeling. DM-celecoxib inhibited left ventricular systolic functional deterioration, and prevented left ventricular hypertrophy and fibrosis. It also activated GSK-3α and β by inhibiting Akt, suppressing the activity of β-catenin and nuclear factor of activated T-cells and thereby decreasing the expression of the Wnt/β-catenin target gene products fibronectin and matrix metalloproteinase-2. These results suggest that DM-celecoxib is clinically useful for treating pressure-induced heart diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app