Add like
Add dislike
Add to saved papers

Core/shell protein-reactive nanogels via a combination of RAFT polymerization and vinyl sulfone postmodification.

Nanomedicine 2016 October
AIM: A promising nanogel vaccine platform was expanded toward antigen conjugation.

MATERIALS & METHODS: Block copolymers containing a reactive ester solvophobic block and a PEG-like solvophilic block were synthesized via reversible addition-fragmentation chain-transfer polymerization. Following self-assembly in DMSO, the esters allow for core-crosslinking and hydrophilization by amide bond formation with primary amines. Free thiols were accessed at the polymer chain ends through aminolysis of the reversible addition-fragmentation chain-transfer groups, and into the nanogel core by reactive ester conversion with cysteamine. Subsequently, free thiols were converted into vinyl sulfone moieties.

RESULTS: Despite sterical constraints, nanogel-associated vinyl sulfone moieties remained well accessible for cysteins to enforce protein conjugation successfully.

CONCLUSION: Our present findings provide a next step toward well-defined vaccine nanoparticles that can co-deliver antigen and a molecular adjuvant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app