Add like
Add dislike
Add to saved papers

Heterogeneous integration of a III-V VCSEL light source for optical fiber sensing.

Optics Letters 2016 September 16
We propose a fiber Bragg grating (FBG) sensor interrogation system utilizing a III-V vertical cavity surface emitting laser (VCSEL) as the on-chip light source. Binary blazed grating (BBG) for coupling between III-V VCSEL and silicon-on-insulator (SOI) waveguides is demonstrated for interrogation of the FBG sensor. The footprint size of the BBG is only 5.62  μm×5.3  μm, and each BBG coupler period has two subperiods. The diameter of the VCSEL's emitting window is 5 μm, which is slightly smaller than that of the BBG coupler, to be well-matched with the proposed structure. Results show that the coupling efficiency from vertical cavities of the III-V VCSEL to the in-plane waveguides reached as high as 32.6% when coupling the 1550.65 nm light. The heterogeneous integration of the III-V VCSEL and SOI waveguides by BBG plays a fundamental role in inducing a great breakthrough to the miniaturization of an on-chip light source for optical fiber sensing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app