Add like
Add dislike
Add to saved papers

Analytical Characterization of an Oil-in-Water Adjuvant Emulsion.

Adjuvants are typically used in subunit vaccine formulations to enhance immune responses elicited by individual antigens. Physical chemical characterization of novel adjuvants is an important step in ensuring their effective use in vaccine formulations. This paper reports application of a panel of quantitative assays developed to analyze and characterize an oil-in-water adjuvant emulsion, which contains glucopyranosyl lipid A (GLA) and is a squalene-based emulsion. GLA is a fully synthetic analogue of monophosphoryl lipid A, which is a Toll-like receptor type 4 agonist and an FDA-approved adjuvant. The GLA-stable emulsion (GLA-SE) is currently being used for a respiratory syncytial virus vaccine in a phase 2 clinical trial. GLA was quantitated using reverse-phased high-performance liquid chromatography (RP-HPLC) coupled to a mass spectrometric detector, achieving higher assay sensitivity than the charged aerosol detection routinely used. Quantitation of the excipients of GLA-SE, including squalene, egg phosphatidyl choline, and Poloxamer 188, was achieved using a simple and rapid RP-HPLC method with evaporative light scattering detection, eliminating chemical derivatization typically required for these chromophore-lacking compounds. DL-α-tocopherol, the antioxidant of the GLA-SE, was quantitated using a RP-HPLC method with conventional UV detection. The experimental results compared well with values expected for these compounds based on targeted composition of the adjuvant. The assays were applied to identify degradation of individual components in a GLA-SE sample that degraded into distinct aqueous and oil phases. The methods developed and reported here are effective tools in monitoring physicochemical integrity of the adjuvant, as well as in formulation studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app