Add like
Add dislike
Add to saved papers

Efficient whole-cell biocatalyst for Neu5Ac production by manipulating synthetic, degradation and transmembrane pathways.

OBJECTIVE: To develop a strategy for producing N-acetyl-D-neuraminic acid (Neu5Ac), which is often synthesized from exogenous N-acetylglucosamine (GlcNAc) and pyruvate, but without using pyruvate.

RESULT: An efficient three-module whole-cell biocatalyst strategy for Neu5Ac production by utilizing intracellular phosphoenolpyruvate was established. In module I, the synthetic pathway was constructed by coexpressing GlcNAc 2-epimerase from Anabaena sp. CH1 and Neu5Ac synthase from Campylobacter jejuni in Escherichia coli. In module II, the Neu5Ac degradation pathway of E. coli was knocked out, resulting in 2.6 ± 0.06 g Neu5Ac l(-1) after 72 h in Erlenmeyer flasks. In module III, the transmembrane mode of GlcNAc was modified by disruption of GlcNAc-specific phosphotransferase system and Neu5Ac now reached 3.7 ± 0.04 g l(-1). In scale-up catalysis with a 1 l fermenter, the final Neu5Ac yield was 7.2 ± 0.08 g l(-1).

CONCLUSION: A three-module whole-cell biocatalyst strategy by manipulating synthetic, degradation and transmembrane pathways in E. coli was an economical method for Neu5Ac production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app