Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Screening of reproduction-related single-nucleotide variations from MeDIP-seq data in sheep.

Extensive variation in reproduction has arisen in Chinese Mongolian sheep during recent domestication. Hu and Small-tailed Han sheep, for example, have become non-seasonal breeders and exhibit higher fecundity than Tan and Ujumqin breeds. We therefore scanned reproduction-related single-nucleotide variations from methylated DNA-immunoprecipitation sequencing data generated from each of those four breeds to uncover potential mechanisms underlying this breed variation. We generated a high-quality map of single nucleotide variations (SNVs) in DNA methylation enriched regions, and found that the majority of variants are located within non-coding regions. We identified 359 SNVs within the Sheep Quantitative Trait Locus (QTL) database. Nineteen of these SNVs associated with the Aseasonal Reproduction QTL, and 10 out of the 19 reside close to genes with known reproduction functions. We also identified the well-known FecB mutation in high-fecundity sheep (Hu and Small-tailed Han sheep). When we applied these FecB finding to our breeding system, we improved lambing rate by 175%. In summary, this study provided strong candidate SNVs associated with sheep fecundity that can serve as targets for functional testing and to enhance selective breeding strategies. Mol. Reprod. Dev. 83: 958-967, 2016 © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app