JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evaluation of Generalized Born Models for Large Scale Affinity Prediction of Cyclodextrin Host-Guest Complexes.

Binding affinity prediction with implicit solvent models remains a challenge in virtual screening for drug discovery. In order to assess the predictive power of implicit solvent models in docking techniques with Amber scoring, three generalized Born models (GBHCT , GBOBC I, and GBOBC II) available in Dock 6.7 were utilized, for determining the binding affinity of a large set of β-cyclodextrin complexes with 75 neutral guest molecules. The results were compared to potential of mean force (PMF) free energy calculations with four GB models (GBStill , GBHCT , GBOBC I, and GBOBC II) and to experimental data. Docking results yield similar accuracy to the computationally demanding PMF method with umbrella sampling. Neither docking nor PMF calculations reproduce the experimental binding affinities, however, as indicated by a small Spearman rank order coefficient (∼0.5). The binding energies obtained from GB models were decomposed further into individual contributions of the binding partners and solvent environments and compared to explicit solvent simulations for five complexes allowing for rationalizing the difference between explicit and implicit solvent models. An important observation is that the explicit solvent screens the interaction between host and guest much stronger than GB models. In contrast, the screening in GB models is too strong in solutes, leading to overestimation of short-range interactions and too strong binding. It is difficult to envision a way of overcoming these two opposite effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app