Controlled Clinical Trial
Journal Article
Add like
Add dislike
Add to saved papers

Treatment of patients with aortic atherosclerotic disease with paclitaxel-associated lipid nanoparticles.

Clinics 2016 August
OBJECTIVE: The toxicity of anti-cancer chemotherapeutic agents can be reduced by associating these compounds, such as the anti-proliferative agent paclitaxel, with a cholesterol-rich nanoemulsion (LDE) that mimics the lipid composition of low-density lipoprotein (LDL). When injected into circulation, the LDE concentrates the carried drugs in neoplastic tissues and atherosclerotic lesions. In rabbits, atherosclerotic lesion size was reduced by 65% following LDE-paclitaxel treatment. The current study aimed to test the effectiveness of LDE-paclitaxel on inpatients with aortic atherosclerosis.

METHODS: This study tested a 175 mg/m2 body surface area dose of LDE-paclitaxel (intravenous administration, 3/3 weeks for 6 cycles) in patients with aortic atherosclerosis who were aged between 69 and 86 yrs. A control group of 9 untreated patients with aortic atherosclerosis (72-83 yrs) was also observed.

RESULTS: The LDE-paclitaxel treatment elicited no important clinical or laboratory toxicities. Images were acquired via multiple detector computer tomography angiography (64-slice scanner) before treatment and at 1-2 months after treatment. The images showed that the mean plaque volume in the aortic artery wall was reduced in 4 of the 8 patients, while in 3 patients it remained unchanged and in one patient it increased. In the control group, images were acquired twice with an interval of 6-8 months. None of the patients in this group exhibited a reduction in plaque volume; in contrast, the plaque volume increased in three patients and remained stable in four patients. During the study period, one death unrelated to the treatment occurred in the LDE-paclitaxel group and one death occurred in the control group.

CONCLUSION: Treatment with LDE-paclitaxel was tolerated by patients with cardiovascular disease and showed the potential to reduce atherosclerotic lesion size.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app