Add like
Add dislike
Add to saved papers

The Effects of Molecular Hydrogen and Suberoylanilide Hydroxamic Acid on Paraquat-Induced Production of Reactive Oxygen Species and TNF-α in Macrophages.

Inflammation 2016 December
The aim of this study is to investigate the effects of molecular hydrogen (H2) and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on paraquat (PQ)-stimulated production of reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) in macrophages. First, the PQ optimal concentration was determined in RAW264.7 macrophage by treating serum-starved cells with PQ at 0, 0.001, 0.01, 0.1, 1, and 10 mM. We evaluated at 1, 2 and 8 h (1) cell viability (by means of trypan blue exclusion method), (2) intracellular ROS levels (with a fluorescent DCFH-DA probe), and (3) TNF-α level in the culture media (determined by enzyme-linked immunosorbent assay, ELISA). Subsequently, mouse RAW267.4 macrophages were treated with PQ in combination with SAHA and/or H2 for 8 h. PQ exerted a significant stimulatory but nontoxic effect on RAW267.4 macrophages at 0.1 mM. This PQ concentration was used in the subsequent experiments. H2 and H2 combined with SAHA evoked a greater reduction in PQ-induced ROS production than SAHA alone, especially at 2 and 8 h. At 1 and 2 h, treatments involving H2 caused a greater decrease in PQ-induced production of TNF-α than the corresponding treatments without H2. However, at 8 h, treatment with SAHA evoked more pronounced effects on TNF-α than treatment without SAHA. H2 decreases PQ-induced ROS production and attenuates early PQ-induced TNF-α production whereas SAHA reduces the late phase of the PQ-induced TNF-α production in macrophages. The effects are enhanced by the combination of H2 and SAHA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app