Add like
Add dislike
Add to saved papers

Site-directed mutagenesis of bacterial cellulose synthase highlights sulfur-arene interaction as key to catalysis.

Carbohydrate Research 2016 November 4
Cellulose is one of the most abundant biological polymers on Earth, and is synthesized by the cellulose synthase complex in cell membranes. Although many cellulose synthase genes have been identified over the past 25 years, functional studies of cellulose synthase using recombinant proteins have rarely been conducted. In this study, we conducted a functional analysis of cellulose synthase with site-directed mutagenesis, by using recombinant cellulose synthase reconstituted in living Escherichia coli cells that we recently constructed (cellulose-synthesizing E. coli, CESEC). We demonstrated that inactivating mutations at an important amino acid residue reduced cellulose production. In this study, an interesting loss-of-function mutation occurred on Cys308, whose main chain carbonyl plays an important role for locating the cellulose terminus. Mutating this cysteine to serine, thus changing sulfur to oxygen in the side chain, abolished cellulose production in addition to other apparent detrimental mutations. This unexpected result highlights that the thiol side-chain of this cysteine plays an active role in catalysis, and additional mutation experiments indicated that the sulfur-arene interaction around Cys308 is a key in cellulose-synthesizing activity. Data obtained by CESEC shed light on the function of cellulose synthase in living cells, and will deepen our understanding of the mechanism of cellulose synthase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app