COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Superior isolation of antigen-specific brain infiltrating T cells using manual homogenization technique.

Effective recovery of activated brain infiltrating lymphocytes is critical for investigations involving murine neurological disease models. To optimize lymphocyte recovery, we compared two isolation methods using brains harvested from seven-day Theiler's murine encephalomyelitis virus (TMEV) and TMEV-OVA infected mice. Brains were processed using either a manual dounce based approach or enzymatic digestion using type IV collagenase. The resulting cell suspensions from these two techniques were transferred to a percoll gradient, centrifuged, and lymphocytes were recovered. Flow cytometric analysis of CD45hi cells showed greater percentage of CD44hi CD62lo activated lymphocytes and CD19+ B cells using the dounce method. In addition, we achieved a 3-fold greater recovery of activated virus-specific CD8 T cells specific for the immunodominant Db :VP2121-130 and engineered Kb :OVA257-264 epitopes through manual dounce homogenization approach as compared to collagenase digest. A greater percentage of viable cells was also achieved through dounce homogenization. Therefore, we conclude that manual homogenization is a superior approach to isolate activated T cells from the mouse brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app