Journal Article
Review
Add like
Add dislike
Add to saved papers

Effect of Hypothermia and Targeted Temperature Management on Drug Disposition and Response Following Cardiac Arrest: A Comprehensive Review of Preclinical and Clinical Investigations.

Targeted temperature management (TTM) has been shown to reduce mortality and improve neurological outcomes in out-of-hospital cardiac arrest (CA) patients and in neonates with hypoxic-ischemic encephalopathy (HIE). TTM has also been associated with adverse drug events in the critically ill patient due to its effect on drug pharmacokinetics (PKs) and pharmacodynamics (PDs). We aim to evaluate the current literature on the effect of TTM on drug PKs and PDs following CA. MEDLINE/PubMed databases were searched for publications, which include the MeSH terms hypothermia, drug metabolism, drug transport, P450, critical care, cardiac arrest, hypoxic-ischemic encephalopathy, pharmacokinetics, and pharmacodynamics between July 2006 and October 2015. Twenty-three studies were included in this review. The studies demonstrate that hypothermia impacts PK parameters and increases concentrations of cytochrome-P450-metabolized drugs in the cooling and rewarming phase. Furthermore, the current data demonstrate a combined effect of CA and hypothermia on drug PK. Importantly, these effects can last greater than 4-5 days post-treatment. Limited evidence suggests hypothermia-mediated changes in the Phase II metabolism and the Phase III transport of drugs. Hypothermia also has been shown to potentially decrease the effect of specific drugs at the receptor level. Therapeutic hypothermia, as commonly deployed/applied during TTM, alters PK, and elevates concentrations of several commonly used medications. Hypothermia-mediated effects are an important factor when dosing and monitoring patients undergoing TTM treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app