Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium.

Bone 2016 December
Pulsed electromagnetic fields (PEMFs) have been considered as a potential candidate for the prevention and treatment of osteoporosis, however, the mechanism of its action is still elusive. We have previously reported that 50Hz 0.6mT PEMFs stimulate osteoblastic differentiation and mineralization in a primary cilium- dependent manner, but did not know the reason. In the current study, we found that the PEMFs promoted osteogenic differentiation and maturation of rat calvarial osteoblasts (ROBs) by activating bone morphogenetic protein BMP-Smad1/5/8 signaling on the condition that primary cilia were normal. Further studies revealed that BMPRII, the primary binding receptor of BMP ligand, was readily and strongly upregulated by PEMF treatment and localized at the bases of primary cilia. Abrogation of primary cilia with small interfering RNA sequence targeting IFT88 abolished the PEMF-induced upregulation of BMPRII and its ciliary localization. Knockdown of BMPRII expression level with RNA interference had no effects on primary cilia but significantly decreased the promoting effect of PEMFs on osteoblastic differentiation and maturation. These results indicated that PEMFs stimulate osteogenic differentiation and maturation of osteoblast by primary cilium-mediated upregulation of BMPRII expression and subsequently activation of BMP-Smad1/5/8 signaling, and that BMPRII is the key component linking primary cilium and BMP-Smad1/5/8 pathway. This study has thus revealed the molecular mechanism for the osteogenic effect of PEMFs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app