Add like
Add dislike
Add to saved papers

Metal Chelation Assisted In Situ Migration and Functionalization of Catalysts on Peapod-Like Hollow SnO 2 toward a Superior Chemical Sensor.

Small 2016 November
Rational design of nanostructures and efficient catalyst functionalization methods are critical to the realization of highly sensitive gas sensors. In order to solve these issues, two types of strategies are reported, i.e., (i) synthesis of peapod-like hollow SnO2 nanostructures (hollow 0D-1D SnO2 ) by using fluid dynamics of liquid Sn metal and (ii) metal-protein chelate driven uniform catalyst functionalization. The hollow 0D-1D SnO2 nanostructures have advantages in enhanced gas accessibility and higher surface areas. In addition to structural benefits, protein encapsulated catalytic nanoparticles result in the uniform catalyst functionalization on both hollow SnO2 spheres and SnO2 nanotubes due to their dynamic migration properties. The migration of catalysts with liquid Sn metal is induced by selective location of catalysts around Sn. On the basis of these structural and uniform functionalization of catalyst benefits, biomarker chemical sensors are developed, which deliver highly selective detection capability toward acetone and toluene, respectively. Pt or Pd loaded multidimensional SnO2 nanostructures exhibit outstanding acetone (R air /R gas = 93.55 @ 350 °C, 5 ppm) and toluene (R air /R gas = 9.25 @ 350 °C, 5 ppm) sensing properties, respectively. These results demonstrate that unique nanostructuring and novel catalyst loading method enable sensors to selectively detect biomarkers for exhaled breath sensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app