Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

Lysosomal trafficking defects link Parkinson's disease with Gaucher's disease.

Lysosomal dysfunction has been implicated in multiple diseases, including lysosomal storage disorders such as Gaucher's disease, in which loss-of-function mutations in the GBA1 gene encoding the lysosomal hydrolase β-glucocerebrosidase result in lipid substrate accumulation. In Parkinson's disease, α-synuclein accumulates in Lewy bodies and neurites contributing to neuronal death. Previous clinical and genetic evidence has demonstrated an important link between Parkinson's and Gaucher's disease, as GBA1 mutations and variants increase the risk of Parkinson's and Parkinson's patients exhibit decreased β-glucocerebrosidase activity. Using human midbrain neuron cultures, we have found that loss of β-glucocerebrosidase activity promotes α-synuclein accumulation and toxicity, whereas α-synuclein accumulation further contributes to decreased lysosomal β-glucocerebrosidase activity by disrupting β-glucocerebrosidase trafficking to lysosomes. Moreover, α-synuclein accumulation disrupts trafficking of additional lysosomal hydrolases, further contributing to lysosomal dysfunction and neuronal dyshomeostasis. Importantly, promoting β-glucocerebrosidase activity reduces α-synuclein accumulation and rescues lysosomal and neuronal dysfunction, suggesting that β-glucocerebrosidase may be an important therapeutic target for advancing drug discovery in synucleinopathies including Parkinson's disease. © 2016 International Parkinson and Movement Disorder Society.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app