Add like
Add dislike
Add to saved papers

Activation by Allostery in Cell-Wall Remodeling by a Modular Membrane-Bound Lytic Transglycosylase from Pseudomonas aeruginosa.

Structure 2016 October 5
Bacteria grow and divide without loss of cellular integrity. This accomplishment is notable, as a key component of their cell envelope is a surrounding glycopeptide polymer. In Gram-negative bacteria this polymer-the peptidoglycan-grows by the difference between concurrent synthesis and degradation. The regulation of the enzymatic ensemble for these activities is poorly understood. We report herein the structural basis for the control of one such enzyme, the lytic transglycosylase MltF of Pseudomonas aeruginosa. Its structure comprises two modules: an ABC-transporter-like regulatory module and a catalytic module. Occupancy of the regulatory module by peptidoglycan-derived muropeptides effects a dramatic and long-distance (40 Å) conformational change, occurring over the entire protein structure, to open its active site for catalysis. This discovery of the molecular basis for the allosteric control of MltF catalysis is foundational to further study of MltF within the complex enzymatic orchestration of the dynamic peptidoglycan.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app