Add like
Add dislike
Add to saved papers

Sucrose esters improve the colloidal stability of nanoethosomal suspensions of (-)-epigallocatechin gallate for enhancing the effectiveness against UVB-induced skin damage.

Nanoethosomal suspensions, composed of phospholipids, ethanol, and water, are novel lipid carriers. These suspensions have been reported to enhance the permeation of drugs into the skin as a result of the interdigitation effect of ethanol on the lipid bilayer of liposomes and by increasing the fluidity of lipids in the stratum corneum. The physical stability of the nanoethosomal suspension is still a critical research problem until now. This study investigated the commercial palm sucrose esters to improve the colloidal stability of nanoethosomal suspensions. The results indicated that palm sucrose esters (PSE) were effective for stabilizing nanoethosomal suspension of (-)-epigallocatechin gallate (EGCG) from green tea. A PSE concentration of 0.15% was optimal for a nanoethosomal suspension which gave mean diameter 75.5 ± 3.5 nm, zeta potential -30.8 ± 3.2 mV and polydispersity index 0.207 ± 0.017. Moreover, the effectiveness of stabilization was influenced by the degree of esterification of the sucrose esters: the sucrose polyesters could prolong the stability of nanoethosomes loaded with EGCG to a year, but the sucrose monoesters only provided less than 6 months of stabilization. EGCG nanoethosomal suspension stabilized by sucrose polyesters shows better inhibition effectiveness against UVB-induced skin damage than native EGCG. The nanoethosomal suspension has the potential for its utilization as skin care and other products. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2416-2425, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app