Journal Article
Review
Add like
Add dislike
Add to saved papers

Bilateral Alterations in Corneal Nerves, Dendritic Cells, and Tear Cytokine Levels in Ocular Surface Disease.

Cornea 2016 November
This review summarizes the recent literature regarding corneal imaging in human subjects using in vivo confocal microscopy. It also covers the recent literature on corneal immune cells, nerves, and tear cytokine levels in ocular surface diseases as well as corneal immune privilege. The significance of interactions between corneal immune cells and nerves in health, neurotrophic keratopathy, and infectious keratitis is discussed. Furthermore, bilateral alterations of immune cells and nerves in clinically unilateral corneal diseases and the link to changes of tear cytokines or neuropeptide levels in contralateral eyes are described. Recent studies reported increased density and morphologic changes of corneal dendritic cells in ocular surface disease that correlated with a decrease in subbasal nerve and corneal nerve density, suggesting potential interactions between the immune and nervous systems in the cornea. Although the relevance of tear cytokines is poorly understood, tear cytokines might have an important role in the pathogenesis of ocular surface diseases. In humans and experimental animal models, alterations in immune cells, cytokines, and immunomodulatory neuropeptide levels in contralateral eyes might mediate the incidence of bilateral infectious keratitis and loss of immune privilege of the cornea in bilateral corneal transplantation or neurotrophic keratopathy cases. The discovery of bilateral alterations of immune cells and nerves in ocular surface diseases is considered the missing link between the immune and nervous systems in the cornea, and demonstrates how studies of animal models and humans aid our understanding of human corneal disease phenomena.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app