Add like
Add dislike
Add to saved papers

Tanshinone IIA Modulates Low Density Lipoprotein Uptake via Down-Regulation of PCSK9 Gene Expression in HepG2 Cells.

Tanshinone IIA, one of the most pharmacologically bioactive phytochemicals isolated from Salvia miltiorrhiza Bunge, possesses several biological activities such as anti-inflammation, anti-cancer, neuroprotection and hypolipidemic activities. In this study, we aim to investigate the hypocholesterolemic effect of tanshinone IIA in hepatic cells. We demonstrated that tanshinone IIA significantly increased the amount of low-density lipoprotein receptor (LDLR) and LDL uptake activity in HepG2 cells at the post-transcriptional regulation. We further demonstrated that tanshinone IIA inhibited the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) mRNA and mature protein, which may lead to an increase the cell-surface LDLR in hepatic cells. We further identified a regulatory DNA element involved in the tanshinone IIA-mediated PCSK9 down-regulation, which is located between the -411 and -336 positions of the PCSK9 promoter. Moreover, we found that tanshinone IIA markedly increased the nuclear forkhead box O3a (FoxO3a) level, enhanced FoxO3a/PCSK9 promoter complexes formation and decreased the PCSK9 promoter binding capacity of hepatocyte nuclear factor 1α (HNF-1α), resulting in suppression of PCSK9 gene expression. Finally, we found that the statin-induced PCSK9 overexpression was attenuated and the LDLR activity was elevated in a synergic manner by combination of tanshinone IIA treatment in HepG2 cells. Overall, our results reveal that the tanshinone IIA modulates LDLR level and activity via down-regulation of PCSK9 expression in hepatic cells. Our current findings provide a molecular basis of tanshinone IIA to develop PCSK9 inhibitors for cholesterol management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app