Add like
Add dislike
Add to saved papers

Refined Parameterization of Nonbonded Interactions Improves Conformational Sampling and Kinetics of Protein Folding Simulations.

Recent advances in computational technology have enabled brute-force molecular dynamics (MD) simulations of protein folding using physics-based molecular force fields. The extensive sampling of protein conformations afforded by such simulations revealed, however, considerable compaction of the protein conformations in the unfolded state, which is inconsistent with experiment. Here, we show that a set of surgical corrections to nonbonded interactions between amine nitrogen-carboxylate oxygen and aliphatic carbon-carbon atom pairs can considerably improve the realism of protein folding simulations. Specifically, we show that employing our corrections in ∼500 μs all-atom replica-exchange MD simulations of the WW domain and villin head piece proteins increases the size of the denatured proteins' conformations and does not destabilize the native conformations of the proteins. In addition to making the folded conformations a global minimum of the respective free energy landscapes at room temperature, our corrections also make the free energy landscape smoother, considerably accelerating the folding kinetics and, hence, reducing the computational expense of a protein folding simulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app