Add like
Add dislike
Add to saved papers

An Unbalanced Rearrangement of Chromosomes 4:20 is Associated with Childhood Osteoporosis and Reduced Caspase-3 Levels.

The purpose of this study was to investigate the association of a chromosome 4:20 imbalance with osteoporosis in three related children. Bone biochemistry, bone turnover markers, and dual-energy X-ray absorptiometry (DXA) scanning were performed in all three cases and bone biopsy and histomorphometry in one. The chromosome imbalance was delineated by array comparative genomic hybridization (aCGH) and analyzed for candidate genes. A potential candidate gene within the deleted region is caspase-3, previously linked to low bone mineral density (BMD) in heterozygous mice thus caspase-3 activity was measured in cases and controls. Routine bone biochemistry and markers of bone turnover did not reveal any abnormality. DXA showed reduced total and lumbar spine bone mineral content. aCGH showed an 8 megabase (Mb) deletion of terminal chromosome 4q incorporating a region previously linked to low BMD and a 15 Mb duplication of terminal chromosome 20p. Bone biopsy showed a high bone turnover state, trabecularisation of cortical bone and numerous small osteoclasts coupled with normal bone formation. Basal serum caspase-3 activity was lower in cases compared with controls. We conclude that the early-onset osteoporosis with low basal levels of caspase-3 and abnormal osteoclasts is a feature of this chromosomal translocation. Further investigation of the role of the deleted and duplicated genes and especially caspase-3 is required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app