Add like
Add dislike
Add to saved papers

Endothelium-independent vasorelaxant effect of 20(S)-protopanaxadiol on isolated rat thoracic aorta.

AIM: Ginsenosides are considered to be the major pharmacologically active ginseng constituents, whereas 20(S)-protopanaxadiol [20(S)-PPD] is the active metabolite of ginsenosides in gut. In this study we investigated the effect of 20(S)-PPD on isolated rat thoracic aortas as well as its vasorelaxant mechanisms.

METHODS: Aortic rings with or without endothelium were prepared from Wistar rats and suspended in organ-chambers. The changes in tension of the preparations were recorded through isometric transducers connected to a data acquisition system. The aortic rings were precontracted with phenylephrine (PE, 1 μmol/L) or high-K+ (80 mmol/L).

RESULTS: Application of 20(S)-PPD (21.5-108.5 μmol/L) caused concentration-dependent vasodilation of endothelium-intact aortic rings precontracted with PE or high-K+ , which resulted in the EC50 values of 90.4 or 46.5 μmol/L, respectively. The removal of endothelium had no effect on 20(S)-PPD-induced relaxation. The vasorelaxant effect of 20(S)-PPD was also not influenced by the preincubation with β-adrenergic receptor antagonist propranolol, or with ATP-sensitive K+ channel blocker glibenclamide, voltage-dependent K+ channel blocker 4-AP and inward rectifier K+ channel blocker BaCl2 , whereas it was significantly attenuated by the preincubation with Ca2+ -activated K+ (BKCa ) channel blocker TEA (1 mmol/L). Furthermore, the inhibition of NO synthesis, cGMP and prostacyclin pathways did not affect the vasorelaxant effect of 20(S)-PPD. In Ca2+ -free solution, 20(S)-PPD (108.5 μmol/L) markedly decreased the extracellular Ca2+ -induced contraction in aortic rings precontracted with PE or high-K+ and reduced PE-induced transient contraction. Voltage-dependent Ca2+ channel antagonist nifedipine inhibited PE-induced contraction; further inhibition was observed after the application of receptor-operated Ca2+ channel inhibitor SK&F 96365 or 20(S)-PPD.

CONCLUSION: 20(S)-PPD induces vasorelaxation via an endothelium-independent pathway. The inhibition of voltage-dependent Ca2+ channels and receptor-operated Ca2+ channels and the activation of Ca2+ -activated K+ channels are probably involved in the relaxation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app