Add like
Add dislike
Add to saved papers

Formulation and characterization of esterified xylo-oligosaccharides-stabilized oil-in-water emulsions using microchannel emulsification.

A series of amphiphilically esterified xylo-oligosaccharides (xylo esters) with different fatty acids residues - decanoic acid (C-10), lauric acid (C-12) and palmitic acid (C-16) - were enzymatically modified at 60°C for 4h. These xylo esters were used as emulsifiers to formulate oil-in-water (O/W) emulsions by microchannel emulsification (MCE). Grooved and straight-through MCE was used to investigate the droplet generation and/or emulsion stability. Xylo ester-stabilized oil droplets were generated smoothly from microchannels arranged linearly or two dimensionally, while xylo ester-stabilized emulsions were less monodispersed owing to low surface activity of the xylo esters. The combined use of xylo esters (2.5% (w/w)) and Tween series (0.1% (w/w)) in the continuous phase can improve the monodispersity of the resultant oil. Successful droplet generation was achieved with the straight-through MCE using 2.5% (w/w) xylo laurate and 0.1% (w/w) Tween 20. The optimized combination of xylo laurate and Tween 20 inhibited coalescence and oiling off more efficiently than the droplets solely stabilized by Tween 20 during 30days of storage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app