Add like
Add dislike
Add to saved papers

Development of a quantitative method for active epidermal growth factor extracted from dissolving microneedle by solid phase extraction and liquid chromatography electrospray ionization mass spectrometry.

Dissolving microneedle (DMN), a transdermal drug delivery in which biological drugs are encapsulated in biodegradable and biocompatible polymers, was fabricated using epidermal growth factor (EGF) as a model drug and hyaluronic acid (HA) as a backbone polymeric matrix. After mixing calibration and DMN samples with insulin, an internal standard, solid phase extraction (SPE) was performed to separate EGF and insulin from HA, and then liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) was conducted for microgram-scale quantitation. The method showed good linearity (R(2)=0.997) within a specified range (1-4μg). Additionally, the decrease in EGF levels during DMN fabrication was compared using the SPE/LC-ESI-MS and enzyme-linked immunosorbent assay (ELISA), a traditional analytical method. The ELISA method detected an EGF loss of only 3.88±4.67%, whereas SPE/LC-ESI-MS detected a loss of 16.75±4.39%. Qualitative analysis by circular dichroism showed wavelength shift and splitting after DMN fabrication indicating that EGF was denatured during DMN fabrication and cell viability test showed SPE/LC-ESI-MS is more accurate and reliable for detecting the amount of active EGF loaded into the DMN than ELISA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app