Add like
Add dislike
Add to saved papers

Ultralight Biomass-Derived Carbonaceous Nanofibrous Aerogels with Superelasticity and High Pressure-Sensitivity.

Advanced Materials 2016 November
Superelastic and pressure-sensitive carbonaceous nanofibrous aerogels with a honeycomb-like structure are fabricated through the combination of sustainable konjac glucomannan biomass and flexible SiO2 nanofibers. The aerogels can detect dynamic pressure with a wide pressure range and high sensitivity, which enables real pressure signals, such as human blood pulses, to be monitored in real time and in situ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app