Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of long-term endocrine disrupting compound exposure on Macaca mulatta embryonic stem cells.

Endocrine disrupting chemicals (EDCs) exert significant effects on health and physiology, many traceable to effects on stem cell programming underlying development. Understanding risk of low-level, chronic EDC exposure will be enhanced by knowledge of effects on stem cells. We exposed rhesus monkey embryonic stem cells to low levels of five EDCs [bisphenol A (BPA), atrazine (ATR), tributyltin (TBT), perfluorooctanoic acid (PFOA), and di-(2-ethylhexyl) phthalate (DEHP)] for 28days, and evaluated effects on gene expression by RNAseq transcriptome profiling. We observed little effect of BPA, and small numbers of affected genes (≤119) with other EDCs. There was substantial overlap in effects across two, three, or four treatments. Ingenuity Pathway analysis indicated suppression of cell survival genes and genes downstream of several stress response mediators, activation of cell death genes, and modulations in several genes regulating pluripotency, differentiation, and germ layer development. Potential adverse effects of these changes on development are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app