Add like
Add dislike
Add to saved papers

Small molecules exert anti-apoptotic effect and reduce oxidative stress augmenting insulin secretion in stem cells engineered islets against hypoxia.

Transplantation of pancreatic islets is the most reliable treatment for Type 1 diabetes. However cell death mediated by hypoxia is considered as one of the main difficulties hindering success in islet transplantation. The aim of our experiment was to investigate the role of small molecules in survival of Islet like cell aggregates (ICAs) engineered from umbilical cord matrix under oxygen deprived condition (<5% O2). ICAs were analyzed for cell death via fluoroscein diacetate/propidium iodide (FDA/PI) staining, estimation of Caspase 3 and free radical release in presence and absence of small molecules. The samples were also analyzed for the presence of hypoxia inducible factor 1α (HIF1α) at both transcriptional and translational level. The addition of small molecules showed profound defensive effect on ICAs under hypoxic environment as evidenced by their viability and insulin secretion compared to untreated ICAs. The combinations of Eicosapentaenoic acid (EPA), Docosahexaenoic acid(DHA) and metformin and EPA, DHAandγ amino butyric acid (GABA) acted as anti-apoptotic agents for human ICAs when exposed to 1% O2 for 48h. The combinations of the small molecules reduced the total reactive oxygen species and malonaldehyde (MDA) levels and enhanced the production of glutathione peroxidise (GPx) enzyme under hypoxic conditions. Finally the increase in HIF1α at both protein and gene level confirmed the defensive effect of the additives in hypoxia. These results suggest that the combination of small molecules maintained the viability and functionality of the ICAs in hypoxia by up-regulating HIF1α expression and down regulating the Caspase 3 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app