Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Translating QT interval prolongation from conscious dogs to humans.

AIM: In spite of screening procedures in early drug development, uncertainty remains about the propensity of new chemical entities (NCEs) to prolong the QT/QTc interval. The evaluation of proarrhythmic activity using a comprehensive in vitro proarrhythmia assay does not fully account for pharmacokinetic-pharmacodynamic (PKPD) differences in vivo. In the present study, we evaluated the correlation between drug-specific parameters describing QT interval prolongation in dogs and in humans.

METHODS: Using estimates of the drug-specific parameter, data on the slopes of the PKPD relationships of nine compounds with varying QT-prolonging effects (cisapride, sotalol, moxifloxacin, carabersat, GSK945237, SB237376 and GSK618334, and two anonymized NCEs) were analysed. Mean slope estimates varied between -0.98 ms μM-1 and 6.1 ms μM-1 in dogs and -10 ms μM-1 and 90 ms μM-1 in humans, indicating a wide range of effects on the QT interval. Linear regression techniques were then applied to characterize the correlation between the parameter estimates across species.

RESULTS: For compounds without a mixed ion channel block, a correlation was observed between the drug-specific parameter in dogs and humans (y = -1.709 + 11.6x; R2  = 0.989). These results show that per unit concentration, the drug effect on the QT interval in humans is 11.6-fold larger than in dogs.

CONCLUSIONS: Together with information about the expected therapeutic exposure, the evidence of a correlation between the compound-specific parameter in dogs and in humans represents an opportunity for translating preclinical safety data before progression into the clinic. Whereas further investigation is required to establish the generalizability of our findings, this approach can be used with clinical trial simulations to predict the probability of QT prolongation in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app