Add like
Add dislike
Add to saved papers

Repetitive transcranial magnetic stimulation (rTMS) improves behavioral and biochemical deficits in levodopa-induced dyskinetic rats model.

Oncotarget 2016 September 14
Fluctuations of dopamine levels and upregulations of NR2B tyrosine phosphorylation in the striatum have been connected with levodopa (L-dopa)-induced dyskinesia (LID) in Parkinson's disease (PD). Repetitive transcranial magnetic stimulation (rTMS) is one of the noninvasive and potential method treating dyskinesia. Yet, the effect of rTMS on the above key pathological events remains unclear. In this study, we gave L-dopa treatment intraperitoneally for 22 days to 6-hydroxydopamine-lesioned PD rats to prepare LID rats model, and subsequently applied rTMS daily for 3 weeks to LID rats model. The effect of rTMS on abnormal involuntary movements (AIMs) was assessed. After ending the experiments, we further determined tyrosine hydroxylase (TH)-positive dopaminergic neurons number by immunohistochemistry, dopamine levels by HPLC, glial cell line-derived neurotrophic factor (GDNF) levels by ELISA, NR2B tyrosine phosphorylation and interactions of NR2B with Fyn by immunoblotting and immunoprecipitation. The results demonstrated that rTMS obviously attenuated AIMs scores, reduced the loss of nigral dopaminergic neurons and the fluctuations of striatal dopamine levels. Meanwhile, rTMS significantly increased the expression of GDNF, which couldrestore the damage of dopaminergic neurons. Additionally, rTMS also reduced the levels of the NR2B tyrosine phosphorylation andits interactions with Fyn in the lesioned striatum of LID rats model. Thus, these data indicate that rTMS can provide benefit for the therapy of LID by improving the key biochemical deficits related to dyskinesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app