Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Characteristics of cadmium remobilization in tributary sediments in Three Gorges Reservoir using chemical sequential extraction and DGT technology.

The Three Gorges Reservoir (TGR) is the largest reservoir in China. Cadmium (Cd) is a primary pollutant in the TGR, and its speciation and bioavailability have attracted extensive attention since TGR submergence. In this study, Chelex-100 DGT (diffusive gradient in thin films) and the sequential extraction method were used to investigate the bioavailable Cd in sediments obtained from a typical tributary (Meixi) and mainstream (Yangtze) in the TGR. The total Cd concentrations in sediments of the four stations were also determined. In comparison to the concentrations of labile Cd measured by DGT (CDGT-Cd) in four profiles, CJ and MX-upstream/downstream were at potential risk for Cd release from surface sediments using the apparent diffusion flux across the interface numerical model. The order of CDGT-Cd in surface sediments was as follows: CJ > MX-downstream > MX-upstream > MX-midstream. Additionally, a positive correlation was demonstrated between CDGT-Cd and Cd in the exchangeable fraction (F1) in the surface sediments, indicating that Cd in the exchangeable fraction was readily captured by DGT. A negative correlation was observed between CDGT-Cd and CDGT-Fe, CDGT-Mn in the sediment-water-interface (SWI), suggesting that Fe/Mn oxides did not control the release of labile-Cd from sediments. Furthermore, a positive correlation existed between the CDGT-Cd in the surface sediments and Cd in the oxidizable fraction (F3), illustrating that Cd sorbed or bound with organic matter or sulfide was labile and released into the water phase from the surface sediments. A dark area was found in the AgI gel, which further demonstrated that Cd simultaneously was released with sulfide in this area.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app