Add like
Add dislike
Add to saved papers

Gene Ontology synonym generation rules lead to increased performance in biomedical concept recognition.

BACKGROUND: Gene Ontology (GO) terms represent the standard for annotation and representation of molecular functions, biological processes and cellular compartments, but a large gap exists between the way concepts are represented in the ontology and how they are expressed in natural language text. The construction of highly specific GO terms is formulaic, consisting of parts and pieces from more simple terms.

RESULTS: We present two different types of manually generated rules to help capture the variation of how GO terms can appear in natural language text. The first set of rules takes into account the compositional nature of GO and recursively decomposes the terms into their smallest constituent parts. The second set of rules generates derivational variations of these smaller terms and compositionally combines all generated variants to form the original term. By applying both types of rules, new synonyms are generated for two-thirds of all GO terms and an increase in F-measure performance for recognition of GO on the CRAFT corpus from 0.498 to 0.636 is observed. Additionally, we evaluated the combination of both types of rules over one million full text documents from Elsevier; manual validation and error analysis show we are able to recognize GO concepts with reasonable accuracy (88 %) based on random sampling of annotations.

CONCLUSIONS: In this work we present a set of simple synonym generation rules that utilize the highly compositional and formulaic nature of the Gene Ontology concepts. We illustrate how the generated synonyms aid in improving recognition of GO concepts on two different biomedical corpora. We discuss other applications of our rules for GO ontology quality assurance, explore the issue of overgeneration, and provide examples of how similar methodologies could be applied to other biomedical terminologies. Additionally, we provide all generated synonyms for use by the text-mining community.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app