Add like
Add dislike
Add to saved papers

Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite.

In this study, a composite film based on TEMPO-oxidized cellulose nanofibers (TOCN), polyvinyl alcohol (PVA) and polypyrrole (PPy) was synthesized in situ by a chemical polymerization, resulting in the induced absorption of PPy on the surface of the TOCN. The composite films were investigated with scanning electron microscopy, thermogravimetric analysis, contact angle measurements, mechanical tests, and evaluation of antibacterial properties. The developed composite has nearly identical Young modulus (3.4GPa), elongation (2.6%) and tensile stress (about 51MPa) to TOCN even if PPy, which as poor properties by itself, was incorporated. From the energy-dispersive X-ray spectroscopy (EDX) results, it was shown that PPy is mainly located on the composite surface. Results confirmed by an increase from 54.5 to 83° in contact angle, an increased heat protection (Thermogravimetric analysis) and a decrease in surface energy. The nanocomposites were also evaluated for antibacterial activity against bacteria occasionally found in food: Gram-positive Bacillus subtilis (B. subtilis) and Gram-negative bacteria Escherichia coli (E. coli). The results indicate that the nanocomposites are effective against all of the bacteria studied as shown by the decrease of 5.2logcolonyformingunits (CFU) for B. subtilis and 6.5logCFU for E. coli. Resulting in the total destruction of the studied bacteria. The perfect match between the resulting inhibition zone and the composite surface area has demonstrated that our composite was contact active with a slight leaching of PPy. Our composite was successful as an active packaging on meat (liver) as bacteria were killed by contact, thereby preventing the spread of possible diseases. While it has not been tested on bacteria found in medicine, TOCN/PVA-PPy film may be able to act as an active sterile packaging for surgical instruments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app