Add like
Add dislike
Add to saved papers

Cyclodextrin-polyhydrazine degradable gels for hydrophobic drug delivery.

An injectable and biocompatible hydrogel system was designed for hydrophobic drug delivery. This hydrogel consisted of degradable polymers with cyclodextrin (CD) moieties. CD groups were used to increase the solubility of a hydrophobic molecule (nicardipine) in an aqueous solution through the formation of the inclusion complex. Two sets of gels were prepared by mixing oxidized dextran (DA) and CD functionalized polyhydrazine (PH) at physiological conditions and different level of crosslinking via hydrazone bonds. Cytotoxicity studies on the gels and their components confirmed the biocompatibility of these materials. Gel-30 with higher crosslinking density showed a two week degradation period whereas this period was 10days for gel-10, with lower crosslinking density, to complete degradation. The results from swelling tests and rheological measurements were also found to be dependent on crosslinking density of the hydrogels. Release profile of the hydrogel displayed a sustained release of nicardipin up to 6days for gel-30 and a 4day release with initial burst release for gel-10.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app