Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Advanced quantitative imaging and biomechanical analyses of periosteal fibers in accelerated bone growth.

Bone 2016 November
PURPOSE: The accepted mechanism explaining the accelerated growth following periosteal resection is that the periosteum serves as a mechanical restraint to restrict physeal growth. To test the veracity of this mechanism we first utilized Second Harmonic Generation (SHG) imaging to measure differences of periosteal fiber alignment at various strains. Additionally, we measured changes in periosteal growth factor transcription. Next we utilized SHG imaging to assess the alignment of the periosteal fibers on the bone both before and after periosteal resection. Based on the currently accepted mechanism, we hypothesized that the periosteal fibers adjacent to the physis should be more aligned (under tension) during growth and become less aligned (more relaxed) following metaphyseal periosteal resection. In addition, we measured the changes in periosteal micro- and macro-scale mechanics.

METHODS: 30 seven-week old New Zealand White rabbits were sacrificed. The periosteum was imaged on the bone at five regions using SHG imaging. One centimeter periosteal resections were then performed at the proximal tibial metaphyses. The resected periosteal strips were stretched to different strains in a materials testing system (MTS), fixed, and imaged using SHG microscopy. Collagen fiber alignment at each strain was then determined computationally using CurveAlign. In addition, periosteal strips underwent biomechanical testing in both circumferential and axial directions to determine modulus, failure stress, and failure strain. Relative mRNA expression of growth factors: TGFβ-1, -2, -3, Ihh, PTHrP, Gli, and Patched were measured following loading of the periosteal strips at physiological strains in a bioreactor. The periosteum adjacent to the physis of six tibiae was imaged on the bone, before and after, metaphyseal periosteal resection, and fiber alignment was computed. One-way ANOVA statistics were performed on all data.

RESULTS: Imaging of the periosteum at different regions of the bone demonstrated complex regional differences in fiber orientation. Increasing periosteal strain on the resected strips increased periosteal fiber alignment (p<0.0001). The only exception to this pattern was the 10% strain on the tibial periosteum, which may indicate fiber rupture at this non-physiologic strain. Periosteal fiber alignment adjacent to the resection became less aligned while those adjacent to the physes remained relatively unchanged before and after periosteal resection. Increasing periosteal strain on the resected strips increased periosteal fiber alignment (p<0.0001). The only exception to this pattern was the 10% strain on the tibial periosteum, which may indicate fiber rupture (and consequent retraction) at this non-physiologic strain. Increasing periosteal strain revealed a significant increase in relative mRNA expression for Ihh, PTHrP, Gli, and Patched, respectively.

CONCLUSION: Periosteal fibers adjacent to the growth plate do not appear under tension in the growing limb, and the alignments of these fibers remain unchanged following periosteal resection.

SIGNIFICANCE: The results of this study call into question the long-accepted role of the periosteum acting as a simple mechanical tether restricting growth at the physis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app