JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hypoxia-Dependent HIF-1 Activation Impacts on Tissue Remodeling in Graves' Ophthalmopathy-Implications for Smoking.

CONTEXT: In Graves' ophthalmopathy (GO), inflammation with tissue expansion in a closed compartment like the bony orbit and smoking may cause tissue hypoxia.

OBJECTIVES: In this study, we investigated whether hypoxia-inducible factor-1 (HIF-1) action impacts on tissue remodeling in GO with the aim to identify possible new therapeutic targets.

DESIGN/SETTING/PARTICIPANTS: Orbital fibroblasts (OFs) were derived from GO patients and control (Ctrl) persons. We analyzed HIF-1α levels in response to hypoxia and cigarette smoke extract, as well as HIF-1-dependent vascular endothelial growth factor (VEGF) release and adipogenic differentiation, by using HIF-1α small interfering RNA, or HIF-1 inhibitor BAY 87-2243.

MAIN OUTCOME MEASURES: Western blot, real-time PCR, ELISA, and immunohistochemistry were used to analyze HIF-1α, VEGF, CD31, and adiponectin. Adipogenic differentiation was measured with Nile red assay.

RESULTS: Higher HIF-1α levels in OFs were correlated with the clinical activity score of GO patients. Cigarette smoke extract elevated HIF-1α levels. HIF-1-dependent VEGF secretion was enhanced in GO-OF compared to Ctrl-OF, and as an in vivo consequence, we found a higher vessel density in GO tissue than in Ctrl tissue. Hypoxia strongly stimulated HIF-1-dependent adipogenesis and adiponectin release of GO-OF and enhanced TSH receptor-mediated adipogenesis.

CONCLUSIONS: Hypoxia impacts on tissue remodeling in GO by stimulating angiogenesis and adipogenesis through activation of HIF-1-dependent pathways in OFs. Our results offer a molecular mechanism for the detrimental influence of smoking on GO and an explanation as to why decompression can improve the outcome of patients. Drug-targeted inhibition of HIF-1/VEGF may provide a therapeutic option to control tissue expansion in GO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app