Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Flying high: limits to flight performance by sparrows on the Qinghai-Tibet Plateau.

Limits to flight performance at high altitude potentially reflect variable constraints deriving from the simultaneous challenges of hypobaric, hypodense and cold air. Differences in flight-related morphology and maximum lifting capacity have been well characterized for different hummingbird species across elevational gradients, but relevant within-species variation has not yet been identified in any bird species. Here we evaluate load-lifting capacity for Eurasian tree sparrow (Passer montanus) populations at three different elevations in China, and correlate maximum lifted loads with relevant anatomical features including wing shape, wing size, and heart and lung masses. Sparrows were heavier and possessed more rounded and longer wings at higher elevations; relative heart and lung masses were also greater with altitude, although relative flight muscle mass remained constant. By contrast, maximum lifting capacity relative to body weight declined over the same elevational range, while the effective wing loading in flight (i.e. the ratio of body weight and maximum lifted weight to total wing area) remained constant, suggesting aerodynamic constraints on performance in parallel with enhanced heart and lung masses to offset hypoxic challenge. Mechanical limits to take-off performance may thus be exacerbated at higher elevations, which may in turn result in behavioral differences in escape responses among populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app